- 3-6. Two masses $m_1 = 100$ g and $m_2 = 200$ g slide freely in a horizontal frictionless track and are connected by a spring whose force constant is k = 0.5 N/m. Find the frequency of oscillatory motion for this system.
- A body of uniform cross-sectional area $A=1~\rm cm^2$ and of mass density $\rho=0.8~\rm g/cm^3$ floats in a liquid of density $\rho_0=1~\rm g/cm^3$ and at equilibrium displaces a volume $V=0.8~\rm cm^3$. Show that the period of small oscillations about the equilibrium position is given by

$$au = 2\pi \sqrt{V/gA}$$

where g is the gravitational field strength. Determine the value of τ .

3-8 A pendulum is suspended from the cusp of a cycloid* cut in a rigid support (Figure 3-A). The path described by the pendulum bob is cycloidal and is given by

$$x = a(\phi - \sin \phi), \quad y = a(\cos \phi - 1)$$

where the length of the pendulum is l=4a, and where ϕ is the angle of rotation of the circle generating the cycloid. Show that the oscillations are exactly isochronous with a frequency $\omega_0 = \sqrt{g/l}$, independent of the amplitude.

^{*}The reader unfamiliar with the properties of cycloids should consult a text on analytic geometry.

FIGURE 3-A Problem 3-8.

3-9. A particle of mass m is at rest at the end of a spring (force constant = k) hanging from a fixed support. At t = 0, a constant downward force F is applied to the mass and acts for a time t_0 . Show that, after the force is removed, the displacement of the mass from its equilibrium position ($x = x_0$, where x is down) is

$$x - x_0 = \frac{F}{k} \left[\cos \omega_0 (t - t_0) - \cos \omega_0 t \right]$$

where $\omega_0^2 = k/m$.

- 5.8 * (a) If a mass m=0.2 kg is tied to one end of a spring whose force constant k=80 N/m and whose other end is held fixed, what are the angular frequency ω , the frequency f, and the period τ of its oscillations? (b) If the initial position and velocity are $x_0=0$ and $v_0=40$ m/s, what are the constants A and δ in the expression $x(t)=A\cos(\omega t-\delta)$?
- 5.9 * The maximum displacement of a mass oscillating about its equilibrium position is 0.2 m, and its maximum speed is 1.2 m/s. What is the period τ of its oscillations?
- 5.10 * The force on a mass m at position x on the x axis is $F = -F_0 \sinh \alpha x$, where F_0 and α are positive constants. Find the potential energy U(x), and give an approximation for U(x) suitable for small oscillations. What is the angular frequency of such oscillations?
- 5.11 * You are told that, at the known positions x_1 and x_2 , an oscillating mass m has speeds v_1 and v_2 . What are the amplitude and the angular frequency of the oscillations?
- 5.12 ** Consider a simple harmonic oscillator with period τ . Let $\langle f \rangle$ denote the average value of any variable f(t), averaged over one complete cycle:

$$\langle f \rangle = \frac{1}{\tau} \int_0^\tau f(t) \, dt. \tag{5.103}$$

Prove that $\langle T \rangle = \langle U \rangle = \frac{1}{2}E$ where E is the total energy of the oscillator. [Hint: Start by proving the more general, and extremely useful, results that $\langle \sin^2(\omega t - \delta) \rangle = \langle \cos^2(\omega t - \delta) \rangle = \frac{1}{2}$. Explain why these two results are almost obvious, then prove them by using trig identities to rewrite $\sin^2\theta$ and $\cos^2\theta$ in terms of $\cos(2\theta)$.]

 $\sqrt{5.13}$ ** The potential energy of a one-dimensional mass m at a distance r from the origin is

$$U(r) = U_{\rm o} \left(\frac{r}{R} + \lambda^2 \frac{R}{r} \right)$$

for $0 < r < \infty$, with U_0 , R, and λ all positive constants. Find the equilibrium position r_0 . Let x be the distance from equilibrium and show that, for small x, the PE has the form $U = \text{const} + \frac{1}{2}kx^2$. What is the angular frequency of small oscillations?